登录 EN

添加临时用户

车用燃料电池关键材料产业链资源及环境影响研究

Resource and Environmental Impact Analysis for Industrial Chain of Automotive Fuel Cell-related Critical Materials

作者:荀邓晔
  • 学号
    2019******
  • 学位
    博士
  • 电子邮箱
    xdy******.cn
  • 答辩日期
    2024.05.15
  • 导师
    郝瀚
  • 学科名
    机械工程
  • 页码
    181
  • 保密级别
    公开
  • 培养单位
    015 车辆学院
  • 中文关键词
    燃料电池;关键材料;社会代谢;供给风险;环境影响
  • 英文关键词
    Fuel Cell; Critical Material; Social Metabolism; Supply Risk; Environmental Impact

摘要

在全球气候变化和能源转型的背景下,氢能产业快速发展驱动车用燃料电池等氢能转换设备的大规模普及,进一步带来对铂族金属等关键材料的巨量新增需求。然而,这些关键材料产业链面临供给高度集中、资源耗竭压力巨大、环境及社会影响显著等严峻挑战。为应对上述挑战,需要深入分析燃料电池关键材料的社会代谢路径,跟踪识别其全产业链的供给风险及动态演变规律,精准评估整个产业链的环境影响,从而制定全面系统的资源管理与产业发展战略。为实现上述目标,本研究主要开展了以下工作:(1)刻画了铂族金属全球社会代谢路径,定量分析了2000-2020年间北美、欧洲、日本和中国汽车产业中铂族金属的回收潜力;(2)建立了基于赫芬达尔-赫尔希曼指数耦合全球治理指标、环境绩效指数与对外依存度的供给风险评估指标体系,综合运用网络分析方法,评估了车用铂族金属催化剂和燃料电池汽车产业链的供给风险;(3)建立了多因素耦合的全球及中国燃料电池汽车产业链演变模型,揭示出产业链中各商品的供需动态变化规律;(4)利用生命周期评价方法,核算并预估了2020-2050年间中国燃料电池产业链中商品的国内供给及需求对应的环境影响。研究的主要结论为:(1)汽车尾气催化剂需求的快速增长是铂族金属社会代谢变化的最主要推动力,发达国家和发展中国家汽车产业中铂族金属的生命周期末期回收率差异巨大,在北美、欧洲、日本达到近60%,在中国尚不足30%;(2)车用铂族金属催化剂产业链供给风险主要存在于矿产开采和精炼阶段;燃料电池汽车产业链上游供给风险最高的商品是精炼铂,其次是催化剂,中、下游商品的供给风险与催化剂处于相似水平;(3)中国燃料电池系统、电堆、膜电极、质子交换膜、气体扩散层、催化剂和精炼铂的需求量将在2050年分别达到179-426吉瓦、160-468吉瓦、630-1850万平方米、580-1700万平方米、720-211万平方米、7.3-21.2吨铂当量和0-47吨;(4)2020-2050年间中国燃料电池产业链国内需求对应商品生产的全球增温潜势、颗粒物形成潜势、人类健康臭氧形成潜势和酸化潜势将达到265.1-628.5万吨二氧化碳当量、1.0-2.0万吨PM2.5当量、9.0-19.9万吨氮氧化物当量和5.7-11.9万吨二氧化硫当量。基于二次资源生产所产生的环境影响比基于一次资源减少20%以上。

Against the backdrop of global climate change and energy transition, the hydrogen energy industry is rapidly developing, driving the widespread adoption of hydrogen conversion devices such as automotive fuel cells and consequently generating a significant increase in demand for critical materials like platinum group metals (PGMs). However, the industrial chain of these critical materials faces severe challenges, including a highly concentrated supply, immense pressure from resource depletion, and significant environmental and social impacts. To address these challenges, it is necessary to deeply analyze the social metabolism of fuel cell-related critical materials, track and identify the supply risks and dynamic evolution, accurately assess the environmental impact across the entire industrial chain, and thus develop comprehensive and systematic resource management and industry development strategies.To achieve the above objectives, this study primarily conducted the following tasks: (1) Depicting the global social metabolism pathways of PGMs, and quantitatively analyze the recycling potential of PGMs in the automotive industries of North America, Europe, Japan, and China from 2000 to 2020; (2) Establishing a supply risk assessment indicator system based on the Herfindahl-Hirschman Index coupled with the Worldwide Governance Indicator, Environmental Performance Index, and Import Dependency, and applying network analysis methods to assess the supply risks of the automotive PGM catalyst and fuel cell vehicle (FCV) industrial chains; (3) Establishing a multifactorial coupled evolution model of the global and Chinese FCV industrial chains, and revealing the dynamic changes in the supply and demand of various commodities; (4) Using the Life Cycle Assessment method to assess the environmental impact of domestic supply and demand of commodities in the Chinese fuel cell industrial chain from 2020 to 2050.The main findings of the research are as follows: (1) The rapid growth in demand for automotive exhaust catalysts is the primary driver of changes in the social metabolism of PGMs. There is a significant difference in the end-of-life recycling rates of PGMs in the automotive industry between developed and developing countries, reaching nearly 60% in North America, Europe, and Japan, but less than 30% in China; (2) The supply risk in the automotive PGM catalyst industrial chain is primarily identified in the mining and refining stages. In the FCV industrial chain, the supply risk is highest for refined platinum, followed by catalysts. The supply risk of products in the middle and downstream stages is similar to that of catalysts; (3) The domestic demand for fuel cell systems, stacks, membrane electrodes, proton exchange membranes, gas diffusion layers, catalysts, and refined platinum in China is expected to reach 179-426 GW, 160-468 GW, 6.3-18.5 million square meters, 5.8-17 million square meters, 0.72-2.11 million square meters, 7.3-21.2 tons of platinum equivalent, and 0-47 tons, respectively, by 2050; (4) From 2020 to 2050, the Global Warming Potential (GWP), Particulate Matter Formation Potential (PMFP), Human Health Ozone Formation Potential (HOFP), and Acidification Potential (AP) of commodity production processes corresponding to domestic demand in the Chinese fuel cell industrial chain will reach 2.651-6.285 million tons of CO2 equivalent, 1.0-2.0 thousand tons of PM2.5 equivalent, 9.0-19.9 thousand tons of NOx equivalent, and 5.7-11.9 thousand tons of SO2 equivalent. The environmental impact of domestic production based on secondary resources is over 20% less than that based on primary resources.