登录 EN

添加临时用户

基于磁链矢量预测的永磁同步电机高性能控制方法研究

High Performance Control Strategy of Permanent Magnet Synchronous Motor Based on Flux Linkage Vector Prediction

作者:孙欣
  • 学号
    2017******
  • 学位
    博士
  • 电子邮箱
    x-s******.cn
  • 答辩日期
    2023.05.24
  • 导师
    肖曦
  • 学科名
    电气工程
  • 页码
    150
  • 保密级别
    公开
  • 培养单位
    022 电机系
  • 中文关键词
    永磁同步电机,磁链模型,无差拍预测控制,扰动抑制,自整定
  • 英文关键词
    permanent magnet synchronous motor, flux linkage model, deadbeat predictive control, disturbance suppression, auto-tuning

摘要

永磁同步电机因具有高效率、高可靠性、高转矩惯量比、高功率密度等优异特性,在包括航空航天、轨道交通、机器人、数控机床等诸多重要领域得到了广泛应用。提升动态响应能力及控制精度是永磁同步电机高性能控制系统的重要需求,而高性能的电流控制技术是解决上述难点问题的关键技术。电流控制除了实现高动态性能外,同时还应拥有参数适应性强、抗噪声干扰、计算开销小等特点,以适应实际数字控制系统的应用需要。在此背景下,本文围绕永磁同步电机面向控制的磁链模型及永磁同步电机高性能控制策略开展了深入研究。提出了一种通用形式的面向控制的永磁同步电机磁链建模方法。该方法将不同磁场源的定子磁链看做一个整体,并以dq轴定子电枢电流的二元函数形式描述dq轴定子磁链。磁链模型考虑了空间对称性及磁链量和电感量的物理特性,也考虑了磁路饱和及交叉耦合效应带来的非线性关系,相比传统线性模型具有更高的建模精度,且模型参数测定过程简单,测点数少,对存储和计算资源的需求较小。提出了永磁同步电机无差拍磁链预测控制方法及其抗扰方法。无差拍磁链预测控制方法以定子磁链矢量为状态量,相比传统的无差拍控制方法具有更好的通用性,且控制器接口便于扩展不同的磁链模型,便于在控制中考虑磁链非线性特性。针对原始无差拍方法对高频噪声敏感、谐波含量高、存在稳态误差等问题,通过在无差拍磁链预测控制器基础上添加滤波和积分结构设计了一种抗扰方法,并针对抗扰控制器参数对动态响应、稳定域等方面控制性能的影响进行了分析论证。针对电压、电流受限条件下电流的高动态响应控制问题,基于无差拍磁链预测控制进行扩展并提出一种新型轨迹预测控制策略。所提出的控制策略将多周期时间最优控制的问题转化为单个控制周期的约束优化控制问题,实现高动态响应控制的同时保证电流、电压在安全可行的范围内。设计了轨迹预测控制策略的简化数字实现算法,大幅度缩短了控制器中的执行时间。针对串级控制的永磁同步电机控制系统中速度控制器参数初始整定与系统机械参数辨识存在循环悖论的问题,提出一种适用于初始整定阶段的速度环自调试方法。该方法将bang-bang控制引入速度控制,利用实时DFT技术同时辨识传动系统的惯量、粘滞摩擦系数,并基于辨识结果和速度环期望相角裕度和开环截止频率指标,自动实现速度环PI参数的计算。

Permanent magnet synchronous motors (PMSMs) are widely used in lots of important fields including aerospace, rail transit, robots and computer numerical control machine tools, owing to their excellent performance such as high efficiency, high reliability, high torque-inertia ratio and high power density. To improve dynamic response and control accuracy is a significant requirement of high performance PMSM control system, and high performance current control technology is the key to solve the problem. The desired characteristics of current control include high dynamic performance, strong parameter robustness, high disturbance rejection capability, low computational cost, etc., so as to meet the needs of actual digital control systems. In this context, research on control-oriented PMSM flux linkage models and high performance PMSM control strategies are carried out in this paper.A universal control-oriented PMSM flux linkage model is proposed. The stator flux linkage generated from different magnetic sources are regarded as a whole, and the dq-axis stator flux linkage is modeled as bivariate functions of dq-axis current. The model is based on spatial symmetry and physical property of the quantities, offering a better depiction of the nonlinear relationship between the flux linkages and corresponding currents than the classic linear model. The proposed model requires little computational effort and little memory for storage, and the model parameters can be identified by simple experiments.A novel deadbeat predictive flux linkage control (DB-PFLC) method with disturbance suppression scheme for permanent magnet synchronous motor drives is proposed. The stator flux linkage vector is selected as the state vector, so DB-PFLC is more universal. And the controller interface allows for easy extension to different flux linkage models and easy consideration for flux linkage nonlinearity in control. Since the original deadbeat method feature high sensitivity to high frequency noise, large harmonic components and finite steady-state error, additional filter and parallel integral path is introduced into DB-PFLC and the disturbance suppression scheme is presented. Analysis is conducted on the influence of the controller parameters of disturbance suppression scheme.Aiming at high dynamic response considering the voltage and current constraint, a novel trajectory predictive control strategy is developed based on the extension of DB-PFLC. The proposed control strategy transforms the time-optimal control problem into a constrained optimal control problem in each control interval. High dynamic current response is realized while ensuring the current and voltage within safe and feasible range. A simplified digital implementation algorithm of trajectory predictive control strategy is designed, which greatly reduces the execution time in the controller.In order to address the problem of cycle paradox during the initial tuning of speed controller and the identification of mechanical parameters in the PMSM cascade control system, this paper proposes a speed loop self-commissioning scheme for initial controller parameter setting. The bang-bang controller is introduced into the speed control and real-time DFT is used to identify the inertia and viscous friction coefficient of the transmission system at the same time. According to the identification results and given phase margin and open loop cut-off frequency, the speed loop PI gains are calculated automatically.