登录 EN

添加临时用户

混合发动机主动减振动态过程协调控制及优化

作者:张金羽
  • 学号
    2016******
  • 学位
    博士
  • 电子邮箱
    562******com
  • 答辩日期
    2023.05.21
  • 导师
    杨福源
  • 学科名
    动力工程及工程热物理
  • 保密级别
    公开
  • 培养单位
    015 车辆学院
  • 中文关键词
    混合动力系统;主动减振控制;发动机主动停缸技术;能量管理策略;动态规划;

摘要

面对日益严格的排放法规要求,动力系统电动化已成为汽车行业发展的重要路技术路径之一。融合了新型燃料,先进燃烧技术及混合动力技术的混合发动机技术则是动力系统电动化进程中的重要技术支撑。本课题在混合发动机技术背景下,针对当前混合发动机在低转速部分负荷工况范围内的燃油经济性提升及对振动性能的改善,开展了基于主动减振控制算法的动态过程控制研究。在此基础上分别在单工况点下的定向振动抑制,部分负荷范围内的转速波动的抑制以及循环工况下的燃油消耗提升三个层面,对主动减振控制进行了优化,扩展及研究。首先,基于研究需求对现有混合发动机实验平台进行升级改造,包括:(1) 增程式混合发动机实验平台的搭建;(2) 增程式混合发动机实验平台数据采集系统的升级改造 (3) 并联式混合发动机实验平台控制系统升级。第二,针对单点工况下的定向振动抑制问题,本课题采用了基于电机转矩补偿技术的主动减振控制算法。该算法的核心为基于前馈控制的补偿转矩波形设计。前馈补偿转矩波形设计将直接影响到主动减振控制对发动机各向振动的抑制效果。本课题通过穷举法设计了7种不同的补偿转矩波形并基于上述实验平台对不同补偿转矩波形设计下的算法有效性,各向振动的激振源以及不同波形对各向振动抑制效果开展了实验研究。最终基于实验数据,提出并构建了一种通过主动减振控制定向抑制混合发动机各向振动的新方法。第三,本课题采用了主动停缸提升了部分负荷下的燃油经济性。而为解决主动停缸带来的转速波动问题,本课题对主动减振控制进行了功能扩展,构建了一种基于瞬时转速观测器的电机转矩协调控制策略,并通过实验对该控制策略下的发动机转速波动以及各缸转速波动一致性进行了研究。结果表明通过该控制策略可以有效抑制主动停缸带来的转速波动并提高各缸转速波动的一致性。最后,针对混合发动机循环工况燃油经济性的提升,本课题分别对主动减振控制在稳态工况下的发电效率,主动减振控制在启停机过程中的电能消耗及主动减振控制对循环油耗的影响进行了仿真研究。并在此基础上提出了一种融合主动减振控制,主动停缸以及动态规划算法的循环油耗优化方案。该方案可以将增程式混合发动机的循环油耗提升3%~5.5%。

With the restriction of emission and energy-saving, the electrification of powertrain has become one of the most potential technology routines. Hybrid Engine, who has combined the advantages of advanced combustion mode, alternative fuel and hybrid technology, is a promising method of achieving the electrification of powertrain. To give a practical solution of improving fuel economy at partial load and suppressing the vibration under low speed range, this dissertation has conducted researches on dynamic process control basing on active damping control algorithm. On this basis, the active vibration damping control is optimized, expanded and researched at three levels: directional vibration suppression at single working point, fuel economy improvement and speed fluctuation suppression in partial load range, and fuel consumption improvement under different driving cycles.Firstly, some upgrades of the Hybrid Engine experiment platform are conducted to satisfy the research needs. Those upgrades are:(1) a new Hybrid Engine experiment platform with a configuration of range extender is built-up; (2) The data sampling system of this platform is upgraded; (3) The controlling system of a parallel Hybrid Engine experiment platform is then upgraded.Secondly, aiming at achieving directional vibration suppression in single-point conditions, an active vibration damping control algorithm based on motor torque compensation technology is adopted in this dissertation. The essential part of this algorithm is the waveform designing of compensation torque. The effect of active damping control on suppressing vibration is highly related to the waveform designing of compensation torque. In this dissertation, seven different compensation torque waveforms are designed by exhaustive method, and the effectiveness of active damping control algorithm under different compensation torque waveform design, the excitation source of isotropic vibration, as well as the effect of different waveforms on isotropic vibration suppression are experimentally studied based on the above experimental platform. Finally, based on the experimental data, a novel method for directional suppression of hybrid engine vibration based on active damping control is proposed and constructed.Thirdly, aiming at improving fuel economy under partial load conditions, cylinder deactivation is adopted. However, the adoption of cylinder deactivation will enlarge the speed fluctuation of the whole system. To cope with this problem, this dissertation expands the function of active damping control algorithm. And then, a coordination control strategy by utilizing the motor is constructed based on an instantaneous speed observer. The improvement of the fuel economy and the suppression of speed fluctuation under this coordination control strategy are researched by experiments. And the experiment results show the effectiveness of this coordination control strategy in suppressing speed fluctuation.Finally, aiming at saving fuel consumption of Hybrid Engine under different driving cycles, the influence of active damping control on the efficiency of electric power generation under steady conditions, the electric energy consumption during start-up process or shut-down process and the influence of active damping control on fuel consumptions under different driving cycles are conducted in this dissertation. Basing on the results of those researches, an optimization strategy to improve fuel economy is proposed in the end by using active damping control, cylinder deactivation and dynamic programming. And simulation results show that the fuel consumption under different driving cycle is reduced by 3%~5.5%。