登录 EN

添加临时用户

普鲁士蓝类似物钠离子电池正极材料的高效制备与性能

Highly Efficient Preparation and Performance of Prussian Blue Analogs Cathodes for Sodium Ion Battery

作者:席裕明
  • 学号
    2018******
  • 学位
    博士
  • 电子邮箱
    183******com
  • 答辩日期
    2023.05.16
  • 导师
    吕阳成
  • 学科名
    化学工程与技术
  • 页码
    94
  • 保密级别
    公开
  • 培养单位
    034 化工系
  • 中文关键词
    普鲁士蓝类似物,钠离子电池,电化学,高效制备,结构调控
  • 英文关键词
    Prussian blue analogs, Sodium-ion battery, Electrochemistry,Efficient preparation,Structural regulation

摘要

铁/锰基普鲁士蓝钠离子电池正极材料由于资源丰富成本低,制备方法简单,兼具适中的能量密度,受到了学术和工业界的广泛关注。然而,低缺陷铁/锰基普鲁士蓝的制备通常采用络合沉淀法,制备效率低下,其次是充放电过程中的晶格畸变以及过渡金属溶解等问题,使得容量衰减较快。因此,本论文以低缺陷铁/锰基普鲁士蓝的高效制备和基于结构调控的电化学性能提升为研究目标,围绕纳米前驱体转化生长与团聚行为基础规律和材料结构与电化学性能的构效关系两个关键科学问题开展研究,取得如下进展。在材料的高效制备方面,发展了微反应器内可控纳米沉淀与高温老化耦合的技术平台,实现了高浓度、无络合剂条件下低缺陷锰/铁基普鲁士蓝的高效制备。针对该过程,揭示了不同混合尺度下得到的纳米前驱体在尺寸分布和老化生长机制方面的差异,发现了快速均匀沉淀在老化初期由颗粒反应动力学控制的非经典结晶机制,即纳米前驱体的二次团聚成核生长机制,明确了该机制对于低缺陷锰/铁基普鲁士蓝制备的决定性作用和普适性。在认识材料构效关系方面,发现了铁基普鲁士蓝结构中的间隙水是影响不同氧化还原反应过程钠转移现象的主要原因,探索了不同充放电程序对钠转移及电化学性能的影响,以及间隙水在充放电过程中对钠离子扩散速率和结构的影响,进而通过间隙水调控制备了兼顾比容量和长循环稳定性的铁基普鲁士蓝正极材料。在高性能材料构筑方面,提出发展二元铁锰基普鲁士蓝材料,发展了以锰基普鲁士白为模板,Fe2+为离子交换剂的离子交换方法。利用液相离子交换方法制备得到了具有固溶体结构的二元铁锰基普鲁士蓝,展现了优异的倍率性能(360 mA/g @ 133 mAh/g)和循环稳定性(360 mA/g下循环1000次,容量保留率为88.9%),展现了一定的应用前景。在球磨辅助的准固相离子交换方法中,将化学转化过程与导电网络构筑相耦合,实现了材料倍率性能和循环稳定性的同步提升。

Sodium manganese/iron hexacyanoferrates have attracted widespread attention both in the academia and industry due to their abundant resources, low cost, simple preparation methods, and moderate energy density. However, the preparation of low-defect manganese/iron hexacyanoferrates is usually carried out by a time-consuming chelating-assisted precipitation, which leads to low yield of products. Besides, these materials face the challenge of capacity attenuation resulted from lattice distortion and transition metal dissolution during cycling. Thus, this thesis conducts systematic research aimed at enhancing preparation efficiency of low-defect manganese/iron hexacyanoferrates and improving the electrochemical performance based on structure regulation. Here are two key scientific issues, namely, the basic laws of growth and aggregation of nano-precursors, and the structure and electrochemical performance relationship. The achievements are as follows.For the preparation process, using high concentration raw materials without any chelating agents, a technological platform coupled with microreactors and high-temperature aging has been developed to achieve efficient preparation of low-defect manganese/iron hexacyanoferrates. To figure out why it works, the differences of nano-precursors obtained by different methods are comparatively recognized in size distribution and growth mechanism. The non-classical crystallization mechanism controlled by particle reaction kinetics at initial stage is revealed for uniform nano-precursors generated in microreactor, resulting in the secondary agglomeration nucleation from nano-precursors. This is a key to the high efficiency production of low-defect manganese/iron hexacyanoferrates.To put the as-prepared hexacyanoferrates into practice, the structure-performance relationships are explored. It is found that interstitial water in iron hexacyanoferrates causes the sodium transfer between different redox reaction processes. The effects of charge/discharge procedures on sodium transfer and electrochemical performance are investigated. Moreover, it is revealed that interstitial water plays a key role in the sodium diffusion and structural changes during cycling. Finally, through the regulation of interstitial water, iron hexacyanoferrates deliver a long cycling stability as well as an acceptable capacity under an appropriate electrochemical window.To construct high-performance cathodes, Fe/Mn-based binary hexacyanoferrates are proposed, which are synthesized by an ion exchange process using Prussian white slurry as a template and Fe2+ as an ion exchanger. For the solution method, the composition ratios of the solid solution and iron hexacyanoferrates in the final structure are adjusted. It is proved that such a structure delivers excellent rate performance (360 mA/g @ 133 mAh/g) and cycling stability (with a capacity retention of 88.9% for 1000 cycles at 360 mA/g), which shows great potential for practical applications. For the quasi-solid-state method assisted by ball milling, we couple the chemical conversion process and the construction of conductive network, thus improving the rate performance and cycling stability.