登录 EN

添加临时用户

CMOS毫米波收发机前端关键技术研究

Research on the Key Techniques of CMOS Millimeter-Wave Transceiver Front-End

作者:王佳文
  • 学号
    2018******
  • 学位
    硕士
  • 电子邮箱
    wan******.cn
  • 答辩日期
    2021.05.19
  • 导师
    王燕
  • 学科名
    集成电路工程
  • 页码
    120
  • 保密级别
    公开
  • 培养单位
    026 集成电路学院
  • 中文关键词
    Ka 波段,W 波段,射频前端,CMOS,功率放大器
  • 英文关键词
    Ka band, W band, Front-end, CMOS, power amplifier

摘要

随着数据量需求的不断提高,5G、6G通信迅速发展,应用场景不断拓宽,依赖CMOS毫米波相控阵系统可以解决毫米波通信中传输距离的难题。本文旨在对5G和6G毫米波相控阵系统中的射频前端模块予以研究。本文实现了Ka波段基于四电感谐振腔的收发开关。收发开关仅仅占用了一个电感的面积,并且复用为功率放大器输出匹配网络、低噪声放大器的输入匹配网络和巴伦,并且实现了接收通道和发射通道的联合设计。发射通道饱和输出功率(Psat)为16dBm,输出1dB压缩点(OP1dB)为14.4dBm的,接收通道的最低噪声为5.9dB。本工作显著降低了射频前端芯片面积和收发开关的插入损耗,有助于实现更紧凑更高效的5G毫米波通信相控阵系统。本文设计并实现了Ka波段基于变压器的宽带功率放大器,为了覆盖24到30 GHz和37到43.5 GHz两个工作频段,输入和级间匹配采用双波段变压器设计,输出匹配采用宽带变压器设计。仿真结果显示,全频段内OP1dB大于17.5dBm,Psat大于18dBm。全频段内压缩1dB点处的功率附加效率(PAE)大于18%。本工作探索了65-nm CMOS工艺下变压器宽带设计的极限,大信号带宽覆盖5G毫米波通信28GHz和39GHz两个频带。本文设计并实现了W波段相控阵射频前端模块,集成了基于耦合线的收发开关,同时收发开关复用为PA的输出匹配网络和LNA的输入匹配网络,大大降低了天线接口电路的插入损耗。本工作实现了13.4dBm的Psat和9.8dBm的OP1dB,同时实现了最低8.5dB的噪声因子。收发开关的插损小于2dB,隔离度优于20dB。本工作在65-nm CMOS工艺上实现了集成收发开关的W波段射频前端,并实现了优秀的性能指标,为工作在二分之一特征频率处的毫米波电路设计提供了新的设计思路。本文设计并实现了新型W波段功率合成方式,创新的提出了并联-串联的合成网络,在实现了紧凑版图设计的基础上实现了高输出功率和效率。测试结果显示,Psat为18 dBm,OP1dB为13.8dBm,峰值PAE为15%。本工作为W波段PA的设计提供了新的功率合成方式解决了W波段PA版图布局的问题,并且具有扩展性。

With the continuouw increase in data demand, 5G and 6G communications have debeloped rapidly, and the application scenarios continue to expand. CMOS millimeter-wave phased array system can solve the problem of transmission distance in millimeter-wave communications. This article aims to study the RF front-end modules in 5G and 6G millimeter wave phased array systems.This paper proposed a Ka-band transceiver T/R switch based on a four-inductance coupled resonator. The transceiver switch only occupies the area of an inductor, and is used as the output matching network of the power amplifier, the input matching network of the low noise amplifier and the balun, so the joint design of the receiving channel and the transmitting channel is realized. The saturated output power of the transmitting channel is 16 dBm, the OP1dB is 14.4 dBm, and the lowest NF of the receiving channel is 5.9 dB. This work significantly reduces the area of RF front-end chip and the insertion loss of the T/R switch which helps to realize a more compact and efficient 5G millimeter-wave communication phased array system.This paper proposes a Ka-band transformer-based broadband power amplifier. In order to cover two operating frequency bands of 24 to 30 GHz and 37 to 43.5 GHz, the input and inter-stage matching adopts a dual-band transformer design, and the output matching adopts a broadband transformer design. The simulation results show that the OP1dB and the saturated output power is larger than 17.5 dBm and 18 dBm and the power added efficiency at the 1dB point of compression is greater than 18% across thebandwidth. This work explores the limits of transformer broadband design under 65-nm CMOS technology. The large signal bandwidth covers both 28GHz and 39GHz frequency bands for 5G millimeter wave communications.This paper proposes a W-band phased-array RF front-end module, which integrates a coupled-line-based T/R switch. At the same time, the transceiver switch is reused as the PA output matching network and the LNA input matching network, which greatly reduces the insertion loss of the antenna interface circuit. This work has achieved a saturated output power of 13.4 dBm and an OP1dB of 9.8 dBm, while achieving the lowest NF of 8.5 dB. The insertion loss of the transceiver switch is less than 2 dB, and the isolation is better than 20 dB. This work implements a W-band RF front end with integrated T/R switch on a 65-nm CMOS process, and achieves excellent performance, providing new design ideas for millimeter-wave circuit design working at ft/2.This paper proposes a new W-band power combine method, and innovatively proposes a parallel-series output network, which achieves high output power and efficiency in a compact layout. The measurement results show that the saturated output power is 18 dBm, the OP1dB is 13.8 dBm, and the peak PAE is 15%. This work provides a new power combine method for the design of W-band PA, which solves the problem of W-band PA layout and can be further expanded.