登录 EN

添加临时用户

中国电影的投资回报率研究

Research on the Return on Investment of Chinese Films

作者:莎如拉
  • 学号
    2018******
  • 学位
    硕士
  • 电子邮箱
    sha******.cn
  • 答辩日期
    2021.05.12
  • 导师
    张帏
  • 学科名
    金融
  • 页码
    76
  • 保密级别
    公开
  • 培养单位
    051 经管学院
  • 中文关键词
    电影产业,风险投资,投资回报率,上市电影公司
  • 英文关键词
    film industry, investment, return on investment, stock price

摘要

2019年中国电影票房达到643亿,成为仅次于美国的全球第二大票仓。在我国电影蓬勃发展的表象下,电影行业一直难以摆脱“非标”的标签,中国电影快速发展的同时,电影产业存在很多挑战,尤其是中国电影投资的规范性、成熟度和投资决策过程中的量化模型分析较其他产业相去甚远。本论文就中国电影影片的投资回报率进行相关研究。通过文献总结与相关访谈,论文梳理了电影产业发展的脉络,分析了产业中的上游制片、中游发行和下游院线的盈利模式,并对比分析了中美两国电影产业的发展。 论文重点对中国电影的投资回报率进行了研究。我国电影业及相关文献通常将票房作为电影投资回报分析的因变量,且自变量中含有大量电影上映后才能捕捉到的后验变量。本文将电影类比为风险投资项目,用私募股权投资分析方式去研究,将电影投资回报率作为因变量,且自变量皆为先验变量;构建了电影项目投资回报率预测模型,对我国近三年全部数据可查的国产影片的投资回报率和放映前的指标进行了多元回归分析。量化模型结果显示,影片的投资回报率与影片的主要出品方的个数、电影播放的春节档期、普通流量的数量、名著的IP这些因素之间存在显著的正相关关系,与电影成本、高知名度导演这些因素存在显著的负相关关系。本研究也探讨了我国卖座的高票房电影不一定赚钱的背后原因。 最后论文结合一定的案例,通过对超高投资回报率电影《哪吒》对其背后的出品方光线传媒的股价变化影响的分析,提出了一部电影上映过程中的三个不同阶段的相关信息对出品方企业的市场价值的影响效应模型,包括:第一阶段的口碑热点效应,第二阶段的票房收益效应,第三阶段的创新能力效应;通过对近三年来我国的高投资回报率电影项目的股价与票房梳理,进一步探索上述模型在国内电影发展现阶段的适用性。

It is hard for Chinese film industry to get rid of the "non-standard" label due to the mismatch of time and speed of industrial development. The upper, middle and downstream industrial chains are facing different problems, and industrialization degree of the film industry is still at the primary level. From the perspective of standardization of investment, it falls far short of the maturity of investment in other fields.From the perspective of venture capital’s investment, the paper looks into the entire industry profit model, including upstream production, mid-stream distribution and downstream cinema. By comparing the film industry of China and the United States, this paper discusses the solutions to the drawbacks of China's film industry system from the perspectives of profit window time, the development of derivatives, the involvement of insurance, financing structure, investment modeling and so on, and explores the role that financial institutions could play in the industry.At the same time, using the concept of big data machine learning, this paper uses the crawler to sort and classify film related data for the past three years, construct different indicators, and quantify them, building a multivariate regression model and Random forest model with film return on investment as the dependent variable, exploring the correlation between return on investment and different indicators, constructing a model that can predict the return on investment of a movie and lock down the optimal investment scale. At the same time, it discusses the movement of stock price of the company behind blockbuster, discussing the possible conduction mechanism.Because of the unique culture-related attributes, film investment is no different from other venture capital investments like healthcare and technology, in terms of investment and financing. This article aims to benchmark film projects with ordinary venture capital projects, trying to find a good way to better standardize the investment in film industry and exploring the universality of traditional investment philosophy and underlying logic in this industry.