登录 EN

添加临时用户

毫米波雷达与通信收发机模拟基带电路关键技术研究

Research on Key Techniques of Analog Baseband Circuits of Mm-Wave Radar and Communication Transceivers

作者:段陆强
  • 学号
    2017******
  • 学位
    硕士
  • 电子邮箱
    dua******.cn
  • 答辩日期
    2020.05.19
  • 导师
    池保勇
  • 学科名
    集成电路工程
  • 页码
    69
  • 保密级别
    公开
  • 培养单位
    026 微纳电子系
  • 中文关键词
    毫米波,模拟基带,中频低噪声放大器,宽带可变增益放大器
  • 英文关键词
    Mm-Wave, analog baseband, intermediate frequency low noise amplifier, wideband VGA

摘要

随着电子信息技术在高速无线通信、汽车雷达、医疗安检等应用领域的急速发展,毫米波频段由于其丰富的频率资源而逐渐成为现代通信系统发展的研究热点。毫米波技术具有极宽的带宽、探测能力强、安全保密性高以及传输质量高等优点,将会在无线通信与汽车雷达传感器两个主要领域发挥举足轻重的作用。 本文是基于TSMC CMOS 28nm工艺水平,设计应用于140GHz的毫米波雷达与通信芯片中的模拟基带电路,该芯片是一款实现雷达、通信系统一体化的收发机,其中雷达接收机系统要求高精度、高分辨率,通信系统要求高数据率、高带宽。因此,根据雷达、通信两个子系统的性能指标,模拟基带链路将使用不同的电路结构进行设计以及仿真。首先对于毫米波雷达系统接收机的基带链路,该链路主要包括低噪声中频放大器(LNA)、高通滤波(HPF)、低通滤波(LPF)以及可变增益放大器(PGA)五个模块组成,其中中频LNA采用带有电阻负反馈的反相器形式的低噪声放大器结构,来保证雷达系统接收机的整个基带电路的噪声性能;HPF采用无源RC网络构成,级数为三级,以消除模块级联之间的直流失调;LPF为一阶有源滤波器,采用有源运放单元与RC网络构成,级数为两级,与高通网络一起实现信号带宽调制;PGA由有源运放单元与电阻阵列构成,级数为六级,实现基带链路的增益调制。对该链路的模拟基带电路进行版图设计以及参数提取后仿真之后,整体的后仿真结果显示该电路增益动态范围超过60dB,增益步进精度达到0.5dB,于通带内的最高增益达到近81dB,同时可以实现性能所要求的带宽控制;线性度可以达到输出1dB压缩点12dBm,所关注的拐点噪声系数达到16.2dB。 其次关于通信系统接收机的模拟基带电路,该电路同样需要增益调谐,为实现通信系统接收机的高带宽性能,其基带链路的VGA模块采用的是翻转电压跟随器(Flipped Voltage Follower)结构,该结构是一种开环形式,级数是三级,在达到高带宽的同时实现一定增益动态范围的调谐。对该链路的模拟基带电路的宽带VGA模块进行版图设计以及参数提取后仿真之后,整体的后仿真结果显示该电路增益调谐范围是15~25dB,达到15dB的动态范围,增益步进精度5dB,同时在最高增益下实现10.3GHz的带宽;线性度可以达到输出1dB压缩点5.25dBm,所关注的拐点噪声系数达到21.3dB。

With the rapid development of electronic information technology in high-speed wireless communication, automotive radar, medical security and other applications, mm-wave bands have gradually become a research hot spot in the development of modern communication systems due to their abundant frequency resources. Mm-wave technology has the advantages of extremely wide bandwidth, strong detection capability, high security and confidentiality, and high transmission quality. It will play a pivotal role in the two main areas of wireless communication and automotive radar sensors. This thesis is based on the TSMC CMOS 28nm process to be applied to the analog baseband circuits in the 140GHz millimeter wave radar and communication chip. The chip is a transceiver that realizes the integration of radar and communication systems, where the radar receiver system requires high precision, high resolution. Communication system requires high data rate, high bandwidth. Therefore, according to the performance indexes of the two subsystems of radar and communication, the analog baseband circuits will use different circuit structures for design and simulation. First, for the baseband circuits of the receiver of the millimeter wave radar system, the baseband mainly includes five modules of low noise intermediate frequency amplifier (LNA), high pass filter (HPF), low pass filter (LPF) and variable gain amplifier (PGA) Among them, the intermediate frequency LNA uses a low-noise amplifier structure in the form of an inverter with negative resistance feedback to ensure the noise performance of the entire baseband circuit of the radar system receiver; HPF is composed of a passive RC network, and the number of stages is three. Eliminate the DC offset between the cascading of modules; LPF is a first-order active filter, which is composed of an active op amp unit and an RC network, and the number of stages is two. The amplifier unit is composed of a resistor array, and the number of stages is six to realize the gain modulation of the baseband circuits. After the layout design of the analog baseband circuits of this subsystem and the simulation post-parameter extraction, the overall post-simulation results show that the gain dynamic range of the circuit exceeds 60dB, the gain step accuracy reaches 0.5dB, and the highest gain in the pass-band reaches nearly 81dB At the same time, it can achieve the bandwidth control required by the performance; the linearity can reach the output 1dB compression point of 12dBm, and the inflection point noise figure of concern reaches 16.2dB. Secondly, for the analog baseband circuits of the receiver of the communication system, this circuit also needs gain tuning. In order to achieve the high bandwidth performance of the receiver of the communication system, the VGA module of the baseband circuits uses a flipped voltage follower (Flipped Voltage Follower) structure. The structure is an open-loop form, the number of stages is three, and it achieves tuning of a certain gain dynamic range while achieving high bandwidth. After the layout design and simulation of the parameter extraction of the broadband VGA module of the analog baseband circuit of the circuits, the overall post-simulation results show that the gain tuning range of the circuit is 15 ~ 25dB, reaching a dynamic range of 15dB, and gain step accuracy of 5dB At the same time, the bandwidth of 10.3GHz is achieved at the highest gain; the linearity can reach the output 1dB compression point of 5.25dBm, and the inflection point noise figure of concern reaches 21.3dB.