登录 EN

添加临时用户

金属锂负极骨架结构中的锂沉脱行为研究

The Mechanism of Lithium Plating and Stripping Process in Structured Lithium Metal Anode

作者:张睿
  • 学号
    2015******
  • 学位
    博士
  • 电子邮箱
    zre******com
  • 答辩日期
    2020.05.23
  • 导师
    张强
  • 学科名
    化学工程与技术
  • 页码
    107
  • 保密级别
    公开
  • 培养单位
    034 化工系
  • 中文关键词
    锂金属电池,金属锂负极,相场,骨架结构,机理研究
  • 英文关键词
    lithium metal battery,lithium metal anode,phase field,skeleton structure,mechanism study

摘要

金属锂是备受瞩目的下一代高比能二次电池最理想的负极材料之一,其具有极高的理论比容量和极低的氧化还原电极电势。近五十年来,金属锂负极在充放电过程中存在枝晶不可控生长、固体电解质界面膜不稳定、死锂形成及锂粉化等难题,显著阻碍了以金属锂作为负极的高比能电池实用化进程。由于缺乏对锂沉脱过程机理层面的理解,这些难题仍未得到有效解决。阐明金属锂负极在电池循环过程中锂沉脱反应的机制机理是指导设计高安全性、高性能金属锂负极的前提。针对金属锂负极关键电化学过程机制机理仍缺乏深度理解的问题,基于多相电化学反应体系,提出了金属锂负极锂沉脱过程的金属锂负极相场模型。基于相场理论模拟,探究了各类理想结构的骨架金属锂负极中电子输运通道、离子输运通道、电化学反应界面等对锂枝晶生长、死锂形成等过程的调控机理。提出了骨架结构金属锂负极尺寸结构的设计方案,并初步揭示了导电性、亲锂性、预储锂的关键作用。针对金属锂负极骨架结构如何调控锂沉脱行为的问题,结合相场理论预测,提出了导电骨架和亲锂骨架两个主要概念,通过设计基于石墨烯的导电骨架和亲锂骨架金属锂负极,阐明了导电性和亲锂性对骨架中的锂沉脱行为调控机制。导电骨架的表面导电性和极高的比表面积,提供了大量电化学反应位点,降低了电极表面的局部电流密度;亲锂骨架的亲锂位点可以降低金属锂沉积过程的形核过电势,使金属锂形核数密度大幅提高。骨架的导电性和亲锂性都通过调节电子、离子输运和反应过程引导无枝晶的金属锂沉积形貌,最终提高金属锂负极的电化学性能。针对如何将骨架结构金属锂负极用于高性能全电池的问题,基于相场理论对预储锂结构的预测,设计了基于碳纤维骨架和熔融灌锂技术的预储锂骨架结构金属锂负极。其可与硫正极、磷酸铁锂正极等匹配从而构建高倍率性能的全电池,骨架结构可发挥三维导电网络作用有效避免死锂形成,抑制了负极的体积变化。预储锂的骨架结构通过导电骨架保证离子和电子输运通道,并引入预储锂技术使其可成功地应用于高循环性能的锂硫电池、锂磷酸铁锂等全电池。综上所述,本论文通过相场理论模拟设计了金属锂负极骨架结构,并实验设计制备了导电骨架、亲锂骨架、预储锂骨架,通过理论与实验相结合,探究了骨架结构中的锂沉脱行为调控机制,提出了骨架结构金属锂负极的结构尺寸、表面物性、预储锂等设计优化指标,为实现高安全性金属锂负极的理性设计提供了新思路。

Lithium metal is one of the most promising anode materials for the next-generation energy storage systems. However, the commercial applications of lithium metal batteries have been severely hindered. There are still many challenges such as uncontrollable dendrite growth, unstable solid electrolyte interphase, and dead lithium formation. The rational design of lithium metal anode to address these issues requires understanding on the mechanism of lithium plating and stripping process.To reveal the mechanism of the key electrochemical process of lithium metal anode, phase field theory on lithium metal anode, which can simulate the plating and stripping process of lithium metal anode, is established and improved. Based on phase field methods, the regulation mechanism of electron transport, ion transport and electrochemical reaction interface on the processes of lithium plating and stripping process in various structured lithium metal anodes are investigated.To regulate the lithium plating and stripping process in structured lithium metal anode, combining with the phase field theory, a conductive structured lithium metal anode and a lithiophilic structured lithium metal anode are proposed, which illuminates the mechanisms in conductivity and lithiophilicity of structured lithium metal anodes. The surface conductivity and high specific surface area of the conductive skeleton provide many electrochemical reaction sites and greatly reduce the local current density on the electrode surface. The lithiophilic sites can reduce the nucleation overpotential of lithium metal plating process and greatly increase the nucleation density. The electroconductivity and lithiophilicity of structured lithium metal anode can induce dendrite-free morphology by directly affecting the electron transport and interface reaction process, and finally improve the electrochemical performance of lithium metal anodes.To employ the structured lithium metal anode in full lithium metal batteries, a structured lithium metal anode with lithium pre-stored based on carbon fiber framework and molten lithium infusion technology is designed. The lithium pre-stored composite anode can be matched with sulfur and LiFePO4 to build high-performance full cells. The composite lithium metal anode can play the role of conductive network to effectively avoid the problem of dead lithium and volume change. The structured lithium metal anode with lithium pre-stored can greatly improve the safety and cycle performance of lithium metal batteries.This paper constructs a structured lithium metal anode through the phase field theory, designs a conductive framework, a lithiophilic framework, and a lithium pre-stored framework lithium metal anode, reveals the mechanism of lithium plating and stripping mechanisms in structured anodes, and summarizes the structural and surface property design for structured lithium metal anodes. Finally, a new approach and method to guide the rational design of high-performance lithium metal batteries is proposed.