登录 EN

添加临时用户

同冠芳烃类大环化合物的合成、结构及性能

Synthesis, Structure and Property of Homo Coronarenes

作者:刘汉斌
  • 学号
    2013******
  • 学位
    博士
  • 电子邮箱
    liu******com
  • 答辩日期
    2018.06.02
  • 导师
    王梅祥
  • 学科名
    化学
  • 页码
    159
  • 保密级别
    公开
  • 培养单位
    044 化学系
  • 中文关键词
    同冠芳烃,阴离子-π作用,分子识别
  • 英文关键词
    homo coronarene, anion-π interaction, molecular recognition

摘要

阴离子-π作用作为一种新型的非共价弱相互作用,引起了化学家们的普遍关注。通过实验研究纯粹的阴离子-π作用的本质及其在分子识别方面的应用仍是具有挑战性的课题。大环主体分子是用来研究非共价弱相互作用力非常有力的工具和手段,在超分子化学的研究中扮演着重要角色。本论文的主要工作集中在发展同冠芳烃类大环主体分子及其通过阴离子-π作用对阴离子进行选择性识别。 我们利用“3+1”片段偶联法,通过芳香亲核取代反应,以二苄醇和3, 6-二氯四嗪制备了(CH2O)4-同冠[2]芳烃[2]四嗪。这类新型大环主体分子具有缺电子的矩形盒状空腔,分子内缺电子的四嗪环采取面面相对的构象,光物理性质良好,可以通过阴离子-π作用选择性地识别线型阴离子叠氮酸根和硫氰酸根。 我们以二苄硫醇和3, 6-二氯四嗪为原料,通过“一锅法”或“3+1”片段偶联法高效地合成了含有不同取代形式苯撑单元的(CH2S)4-同冠[2]芳烃[2]四嗪。桥连杂原子由氧原子变为硫原子后,结构变得更为柔顺,环空腔也更为缺电子。利用四嗪环逆电子需求Diels-Alder的反应,实现了“大环-大环”转化,以较高的效率合成了(CH2S)4-同冠[2]芳烃[2]哒嗪,其在乙腈溶液中能与汞离子形成1:1复合物,作用常数为(2.54 ± 0.12) × 104M-1。 我们以二苄硫醇同二苄醇与二氯四嗪生成的三聚体为原料,通过芳香亲核取代反应合成了一系列(CH2O)2, (CH2S)2-同冠[2]芳烃[2]四嗪分子。选择性地氧化硫醚单元后,合成了含有亚砜和砜基桥连基团的同冠芳烃。不同分子骨架的(CH2O)2, (CH2S)2-同冠[2]芳烃[2]四嗪能够选择性地与线形阴离子叠氮酸根发生相互作用,而含有亚砜桥连基团的同冠芳烃则能够选择性地识别硫氰酸根。 总而言之,我们建立和发展了片段偶联法和” 一锅法”,结合硫醚的选择性氧化,合成得到了含有不同杂原子桥连的同冠芳烃新型大环主体分子。我们通过改变大环分子芳环骨架或桥连杂原子种类和氧化态,调控了同冠芳烃大环分子的结构、光谱和电化学性质,并进一步实现了对同冠芳烃在分子识别方面的调控。同冠芳烃合成简单高效,其桥连杂原子和大环分子骨架均易于修饰或衍生,且构象、结构和大环性质可调。随着研究的深入开展,我们相信同冠芳烃能够在分子识别、组装等超分子领域得到更多重要应用。

Anion-π interactions are now recognized as general and useful non-covalent attraction force between anions and electron-deficient π systems. Exploration of the nature and application of anion-π in the molecular recognition remains a challenging issue. Tailor-made macrocycles, which play a pivotal role in supramolecular chemistry, are excellent models to study the non-covalent interactions between hosts and guests. This thesis mainly focuses on the development of novel homo coronarenes and the selective recognition between homo coronarenes and anions. Exploiting the phenylenedimethanol and 3, 6-dichlorotetrazine, , we have developed [3+1] fragment coupling approach on the basis of nucleophilic aromatic substitution reaction, which allows us to achieve a series of (CH2O)4-homocorona[2]arene[2]tetrazines. The homo coronarene derived from phenylenedimethanol and 3, 6-dichlorotetrazine contains electron-deficient rectangular box-like cavites and the tetrazine moieties are face-to-face paralleled. (CH2O)4-homocorona[2]arene[2]tetrazines showed excellent selectivity in anion recognition owing to the shape complementarity between host and guest while forming anion-π interactions. We achieved (CH2S)4-homocorona[2]arene[2]tetrazines in both the one-pot fashion and [3+1] fragment coupling. By changing the bridge atom from oxygen to sulfur, the conformations of the homocoronarenes become more flexible conformation. The cavities of the (CH2S)4-homocorona[2]arene[2]tetrazines are larger and more election-defficient. We synthesized (CH2S)4-homocorona[2]arene[2]pyridazines by the inverse electron demanding Diels-Alder reaction of (CH2S)4-homocorona[2]arene[2]tetrazines. (CH2S)4-homocorona[2]arene[2]pyridazines could form 1:1 complex with Hg2+ in acetonitrile, and the stability constant is (2.54 ± 0.12) × 104M-1. Starting from the phenylenedithiol and the trimer formed by phenylenedimethol and 3, 6-dichlorotetrazine, we constructed a series of homo coronarenes containing mixed bridging atoms. By the selective oxidation of the thioether moieties, we achieved the sulfoxide/sulfone bridged homo coronarenes. (CH2O)2, (CH2S)2-homocorona[2]arene[2]tetrazines have the ability to recognize azide selectively while the mono-sulfoxide bridged homocorona[2]arene[2]tetrazine could recognize thiocyanate selectively. In summary, we have established and developed one-pot and [3+1] fragment coupling reaction strategy to the synthesis of the homo coronarenes. We have demonstrated the selective oxidation of the thioether moiety of homo coronarenes as well. The cavity size, the electronic feature and even the property in molecular recognition of the homo coronarenes could be tuned by the substitution pattern of phenylene subunits and the bridging atoms. The synthesis and modification of homo coronarens are simple and efficient. The conformation and cavity size could be tuned conveniently. With the study proceeding, it is believed that the application of homo coronarenes in supramolecular chemistry will become more abundant.