登录 EN

添加临时用户

火星探测器自主导航方法研究

Research on Autonomous Navigation of Mars Probe

作者:马鹏斌
  • 学号
    2012******
  • 学位
    博士
  • 电子邮箱
    map******com
  • 答辩日期
    2018.05.30
  • 导师
    宝音贺西
  • 学科名
    航空宇航科学与技术
  • 页码
    118
  • 保密级别
    公开
  • 培养单位
    031 航院
  • 中文关键词
    火星探测器,自主导航,滤波,SST测量,无奇点根数
  • 英文关键词
    Mars probe, autonomous navigation, filter; SST measure, nonsingular orbitual elements

摘要

随着星载计算机和测量技术的发展,为了支持更多的深空探测任务,减少对地面测控的依赖,深空探测器自主导航的应用越来越多。火星是人类深空探测的一个重要目标,火星探测器的自主导航是对火星探测任务的重要支持。本文针对火星探测任务,对火星探测器在巡航段、捕获段、环绕段的自主导航方法展开了深入的研究。首先,针对巡航段的特点,研究了火星自然卫星光学测量和基于太阳光谱多普勒位移得到太阳光线的视向速度测量联合导航的方法,提出使用可以消除探测器姿态误差和设备安装误差的火星卫星光学测量模型。其次,利用火星探测器在轨道捕获段的自主导航可以利用地面站介入的特点,提出探测器单向接收地面站发射无线电多普勒信号并处理得到测速数据,与火星卫星光学测量等其他测量手段联合导航的设想,可有效提高接近段的导航精度。对轨道制动过程建立了对轨控推力相关参数进行估值的方法,同时利用外部测量信息结合惯性测量得到的加速度数据,可准确估计发动机推力、剩余质量和燃料秒耗量等参数,有效提高轨道制动过程的导航精度。针对火星探测器环绕段,研究了环绕段使用火星卫星光学测量、SST测量和X射线脉冲星测量联合的自主导航方法。提出采用现有技术条件下可以实现且精度很高的星间无线电测量(SST测量)与光学测量手段联合导航的方法,可大幅提高环绕段的导航精度。同时建立了可适应火星环绕段基于火星质心为基准的X射线脉冲星TOA测量模型,可在不损失精度的情况下极大减少了星载计算的复杂性。针对环绕段仅有SST测量在二体意义下系统不可观测的问题,提出考虑火星引力场田谐项等摄动力对只有SST测量时是可观测的思路。提出并研究了采用无奇点根数形式的状态变量,同时基于UKF滤波器和采用高精度的动力学模型,使得环绕火星段的动力学方程非线性减小,在环绕段仅依靠星间测量时可以进行自主导航的方法。导航精度可达到SST与其他测量手段联合导航的精度,尤其是半长轴可以达到更高的精度。通过对各阶段仿真过程对EKF和UKF滤波器进行对比,得出不同情况下两个滤波器的优缺点结论,为根据探测器的星载计算机性能、测量手段、采样频率等情况在实际中选择何种滤波器提供参考。

With the improvement of onboard computer and measure technologies, autonomous navigation has been applied more widely in deep space mission to reduce dependence on ground TT&C. Mars is a significant object of deep space exploration, and autonomous navigation of Mars probe is very important to Mars exploration mission. The dissertation studies the mothed of autonomous navigation in cruise phase, capture phase and orbiting phase of Mars probe.At first, according to the characteristics of cruise phase, it has been study that the autonomous navigation by combining optical observation of Martian moon and sun radial velocity measure based on Doppler shift of solar spectrum. The measure model of right ascension and declination by optical observation of Martian moon is proposed, which can eliminate probe attitude measure error and sensor installation error.Then, according to the characteristics that ground deep stations participate in capture phase, it is proposed that probe receives one-way radio signal transmitted from ground deep station and acquires accurate velocity data. It can improve effectually navigation precision by the accurate velocity data combing optical observation of Martian moon in approaching Mars phase. The mothed of estimating orbit thrust parameters is set up in orbit maneuver process. Meanwhile, combining acceleration data by inertial measurement, the thrust parameters is estimated accurately and navigation precision is improved in orbit maneuver phase.For probe orbiting Mars phase, it has been study that autonomous navigation method using optical measure of Martian moon, satellite-to-satellite tracking measure (SST) and X-ray pulsar measure. That feasible autonomous navigation in the present technical conditions by accurate SST data combing optical measure is proposed, which can achieve very precision in orbiting phase. Another, a method of X-ray pulsar TOA model based on Mars center is set up, which can cut down the complexity of onboard computing without loss accuracy. The high navigation precision can be achieved that using several measures together in orbiting phase.Considering navigation system is unobservable with SST data only in two body problem, it is proposed that taking into account the high order of Mars gravity the navigation system is observable. It studies that taking nonsingular orbital element as state parameter, based on UKF filter and with high precise dynamics models simultaneously, the autonomous navigation can be realized using SST data only in orbiting phase. The navigation precision is equal with that using SST data combing other measure data. In particular it can acquire more precise semi-axis.The advantage and disadvantage of EKF and UKF has been given by simulation in each phase, which provide reference for how to select filter according to probe’s conditions such as onboard computer, measure means, and observation data sampling rate.