登录 EN

添加临时用户

面向分布式主体的可交易能源体系:机制设计与优化策略

Transactive Energy System for Distributed Agents: Mechanism Design and Strategy Optimization

作者:王克道
  • 学号
    2016******
  • 学位
    硕士
  • 电子邮箱
    wkd******.cn
  • 答辩日期
    2018.06.04
  • 导师
    陈启鑫
  • 学科名
    电气工程
  • 页码
    91
  • 保密级别
    公开
  • 培养单位
    022 电机系
  • 中文关键词
    分布式主体,可交易能源,容量合约,交易策略,控制方法
  • 英文关键词
    Distributed Agents, Transactive Energy, Capacity Contract, Trading strategy, Control Method

摘要

在分布式资源大规模发展与用户终端智能设备广泛普及的发展愿景下,亟待设计出一套面向分布式主体的市场化交易与运营机制,培育分布式市场主体之间去中心化的直接交易,以更好地整合利用分布式资源,促进其高效消纳,并实现电力系统的供需动态平衡。因此,论文在充分调研国内外配售侧市场运营、分布式交易理论与实践的基础上,开展了以下的研究工作。 首先,论文提出了面向分布式主体可交易能源体系的概念,以分布式主体间去中心化、自动化、灵活的交易实现其供需对接,同时通过售电商实现了批发市场与零售市场的交易耦合与价格耦合。论文系统化地阐述了面向分布式主体可交易能源体系的体系与特征,描述了该体系的功能定位,交易主体、交易客体的作用,交易机制设计和交易实施流程,并分析了不同场景下市场成员的效益,讨论了支撑该体系的关键技术。 其次,论文在该体系下探讨、提出了储能容量合约机制,可支持对于分布式储能容量的实时租赁与远程调控,从而提高交易的灵活性,也降低了市场成员的交易风险。论文进一步以售电商为运营主体,在引入储能容量合约机制的基础上,提出了售电商计及风险的预期收益优化模型,并求解了售电商的最优交易策略。针对该优化决策问题的非线性建模以及难以求解的情况,采用了“约束成本变量”方法对原问题进行线性转化。论文还提出“储能成本函数”和“售电商等收益曲线”的概念,实现了售电商预期收益的量化评估,交易策略的程序化执行。 最后,论文系统研究了售电商在可交易能源体系下的最优交易与控制策略,同时考虑了在中长期、现货、容量合约等不同市场上的交易优化,以及对于分布式储能设备与柔性负荷的需求响应安排。针对日前、实时两阶段间的不确定因素,采用基于模型预测控制的建模与控制方法,实现了售电商对于可调控资源的“滚动预测、滚动优化”,提升了售电商的运营控制效益。 此外,在容量合约和售电商交易控制策略研究中,论文以算例对提出的方法、策略进行验证,通过成员效益分析论证了可交易能源体系的优越性。

Under the vision of the penetration of distributed resources(DR) and intelligent user terminal equipments, it is urgent to design a set of transaction and operation mechanisms for distributed agents to cultivate the decentralized transactions among the market entities, so as to integrate the DR better and promote their consumption effectively, and to realize the dynamic balance of power systems. Therefore, this thesis comprises main following work on the basis of fully literature research about the theory of decentralized transactions and the practice of electricity retail market operation. Firstly the concept of transactive energy(TE) system for distributed agents is elaborated, which realizes supply and demand docking of the distributed market entities by the decentralized, automated and flexible transactions, and realizes the coupling of price and transaction between the wholesale and retail markets through the electricity retailer(ER). We systematically expound the architecture and characteristics of the TE system, describe the orientation of TE system, the role of the market entities and transaction objects, design the transaction mechanisms and process, discuss the benefits of market members under different scenarios, and list the key technologies for TE system. Secondly a novel capacity contract mechanism(CCM) for energy storage systems (ESS) is discussed and designed in this thesis, which can support the real-time rental and remote control of ESS, so as to improve the flexibility of the transaction and reduce the transaction risk of the market members. After the introducing of CCM, we formulate a profit-maximum model for ER considering volume risk and market risk, and solve the optimal problem to obtain the trading strategy of the ER. We apply the constrained cost variable(CCV) method to handle the difficulty of nonlinear optimization, and propose the concept of “cost function of ESS” and “constant yield curve of ER” to figure out a quantitative evaluation of ER’s expected return and realize programmed operation of the trading strategy. Finally ER’s optimal trading and control strategy under the TE system is studied. Transaction and control in different markets is considered in the thesis, such as medium and long term market trading, spot market trading, CCM trading and the demand response(DR) arrangement for ESS and flexible load. To handle the uncertainty of day-ahead and realtime market, we apply prediction and optimization method based on model predictive control(MPC), so the "rolling prediction and rolling optimization" for ER is realized, and the benefits of ER is enhanced. In addition, in the study of CCM and control strategy, case studies are performed to verify the proposed method and strategy, and the superiority of TE system is demonstrated through market member’s benefit analysis.