登录 EN

添加临时用户

新型GeSn高迁移率沟道材料和相应的纳米线MOS器件研究

Novel GeSn High Mobility Channel Material and Corresponding Nanowire MOS Devices

作者:谷泽国
  • 学号
    2013******
  • 学位
    硕士
  • 电子邮箱
    306******com
  • 答辩日期
    2018.09.13
  • 导师
    钱鹤
  • 学科名
    电子科学与技术
  • 页码
    67
  • 保密级别
    公开
  • 培养单位
    026 微纳电子系
  • 中文关键词
    高迁移率沟道材料,应变GeSn,纳米线Core-Shell结构
  • 英文关键词
    High mobility material, strained GeSn, Core-Shell nanowire

摘要

随着金属氧化物半导体场效应管(MOSFET)的特征尺寸不断缩小,在深亚微米甚至纳米尺度下,单纯依靠传统工艺缩小器件尺寸来提升集成电路的性能已经难以为继。国际半导体产业技术发展蓝图组织(ITRS)已经在数年前就指出采用新型器件结构、引入新型高迁移率沟道材料(Ge、III-V族化合物)等技术手段是集成电路今后主要的研究方向。引入高迁移率沟道材料的器件相比于传统Si材料的器件,因其在小尺寸下驱动电流更大、静态功耗更低等特性,在数字和射频电路应用方面有着巨大的优势。目前,III-V族化合物及Ge的MOS器件研究已经取得了很多进展,但是III-V族化合物的材料体系与传统CMOS工艺并不兼容;Ge材料体系虽然可以兼容业界的硅基CMOS工艺,但是其栅界面缺少合适的钝化方法、源漏存在过大寄生电阻等问题都从很大程度上制约了器件的性能;GeSn材料在Ge材料的基础上,可以更进一步的提高载流子迁移率,但是由于相关研究开展地较晚,很多方面的问题仍然需要进行深入的研究并提出可行的解决方案。本论文主要针对GeSn等新型高迁移率沟道材料,分析了其在应变、弛豫、不同Sn组分情况下的能带结构变化,并进一步提取了相应的有效质量和迁移率;除此以外,为了充分发挥高迁移率材料的优势,设计了纳米线Core-Shell结构和内嵌式沟道结构两种新型的器件结构,并对此两种结构的器件性能进行了仿真模拟研究。能带分析的结果显示,由于GeSn的重空穴的态密度有效质量远大于轻空穴,大多数空穴占据重空穴带,而弛豫GeSn材料Sn组分的增加只会减小轻空穴的有效质量,并不会带来GeSn材料迁移率的显著增加,反之应变GeSn材料将会随着Sn组分浓度的提高带来空穴迁移率的显著提高。此外,在以GeSn材料为内核的纳米线Core-Shell结构中,体系的最高已占轨道基本限定在高迁移率的Ge或者Sn原子上,这说明此结构内核的GeSn材料将成为体系的主要影响因素。器件模拟仿真的结果显示p型Ge/Si纳米线Core/Shell结构既保证了空穴载流子主要集中在内核的高迁移率材料Ge体内,又把较差的Ge和栅介质界面转化为了Si和栅介质的界面;而内嵌式沟道的器件通过将沟道减薄至10nm,极大的抑制了器件关态电流,相比平面器件低了两个数量级,虽然在减薄沟道的同时减小了开态导通电流,但是仿真结果显示其开态电流仍基本上与平面器件维持在同一个数量级之上。

With the MOSFET device dimension shrinking into sub-micro scale or nano-scale regime, it seems that CMOS scaling down in a traditional way is difficult to realize. ITRS had pointed out that further development of the CMOS technology will strongly depend on the introduction of novel high mobility material(Germanium、III-V compound), new process and new device structure. In the area of digital and RF circuit,high mobility materials could provide with a higher Ion current and a lower static power consumption. Although Germanium and III-V compound MOSFETs have shown great performance on individual index, some issues still need to be solved for realizing high performance nano MOSFET, such as the compatibility between III-V compound and Silicon CMOS platform, poor gate interface quality and large source/drain parasitic resistance of Ge MOSFET, many gaps in the field of GeSn research. Therefore, this thesis focus on GeSn material MOSFET, the band structure of strained and relaxed GeSn with different Sn component are discussed, the Ge-Si Core-Shell nanowire MOSFET and recessed MOSFET are also simulated.In this paper, the effects of strained and relaxed GeSn materials on the energy band structure and effective mass of different Sn compositions is studied in detail. Since the GeSn heavy holes density of states is much higher than that light holes, most holes occupy heavy hole bands, the increased Sn composition of the relaxed GeSn material only reduces the effective mass of the light hole, it could not lead to a significant increase in the mobility of GeSn materials. On the contrary, the strained GeSn material will increase the hole mobility significantly with the increased Sn component. The Highest Occupied Molecular of GeSn-Si Core-Shell nanowire structure shows that main performance will depend on core with GeSn. Ge-Si Core-Shell nanowire MOSFET and recessed MOSFET are simulated by TCAD tools, p-type GeSn-Si Core-Shell nanowire has a good interface between Si and High-k, and the Hole carriers are mainly concentrated in the core of the high mobility material Ge. 10nm channel makes the recessed MOSFET Ioff current is 100 times smaller than a planar device, while keeping the Ion current basically the same.