单粒子效应是由空间中的高能粒子撞击电子器件使得器件氧化层内部通过核反应和电离作用产生并累积陷阱电荷,被器件敏感节点积累到足够多的电荷后,将会导致器件的工作状态、输出电平、逻辑状态、功能受阻等发生翻转或瞬态变化的软错误。随着器件尺寸越来越小,即使是微小的电荷也可能会改变器件的状态,纳米器件受到单粒子效应的影响越来越大。在目前的单粒子效应表征方式中,基于噪声理论的辐照损伤表征和实验方法是一种有效的无损检测方法。最近的研究表明,低频噪声因为其对器件性能的重要反馈作用而在辐射效应表征应用领域中重要的角色。人们已经发现,器件辐射后的电参数变化和辐射前的1/f噪声存在着一种近似的正比关系。单粒子效应作为辐射效应中的特殊情况,敏感区域的电荷沉积和收集是其发生根本原因,主要失效机理是由于瞬变电流造成的,但这种失效机制是可以通过重写受影响单位来进行修复。纳米尺度下临界电荷减小,更容易引发单粒子效应。目前的研究还尚未建立一种正确的定量的关系来描述辐照前1 / f噪声和单粒子效应。本论文首先综述了课题的研究背景和研究内容,对现有的辐射效应、噪声表征方法和模拟实验进行了综述,阐述了1/f噪声技术在单粒子效应表征中的可行性,并对几种辐射效应参数化表征技术方法进行了比较。然后论文对脉冲激光模拟实验系统和重离子加速器实验的总体方案进行了设计,完成多个核心模块的设计工作以及核心部件的选型。接下来推导了纳米尺度下MOS的1/f噪声理论模型,并构建了一种基于辐射前1/f噪声幅值临界值的大小来评估单粒子效应的判据方法。此外,基于纳米MOS模型进行了建模仿真,研究和分析了重离子在不同位置、角度、方向射入纳米器件的单粒子现象。最后设计脉冲激光实验系统和重离子实验,搭建整个实验系统,分别对单粒子效应条件下的纳米FPGA和纳米MOS管的噪声进行了实验测试,验证了理论模型。
Single event effects are caused by a single high-energy particle from the space and particle strike causes direct ionization effect or nuclear reactions to generate and cumulate electric charge. When it comes to that the sensitive regions of the semiconductor devices deposit sufficient electric charge, soft errorsincluding, but not limited to,memory bit flip and transient may occur. At the nanoscale, single event effectscan lead to critical issues in space environments. For example, with their own sizes becoming smaller and smaller, devices themselves may no longer be able to attenuate the current pulsesinduced by single event effects. As a consequence, even very small charge can change the work status of the devices in space environments. According to the noise theory, the characterization and experiment evaluation of the irradiation damage is an effective and non-destructive method. Recent studies show that the low-frequency noise plays an indispensable role in practical applications since it becomes an important limitation of the device performances. 1/f noise can reflect the internal defects and the internal characteristics of small changes in semiconductor devices. It has been found that the amplitude of pre-irradiation 1/f noise is closely related to electrical parameter drift. Single event effects are regarded as a special case in radiation effects, and the charge collection is the fundamental cause. The primary failure mechanism is the transient current. The damage is non-destructive,which can be repaired by rewriting the affected unit.by the new technologythe feature size can be more narrowed and the radiation effects will also have different influences at the nanoscale. In conclusion, present studies have not established the precise quantitative relationship between pre-irradiation 1/f noise and single event effects.