随着电子产品的功能多样化和小型化发展,其集成度越来越高。这对传统二维平面上的封装技术提出了更大的挑战。封装技术上的限制严重影响了微电子的快速发展。通过三维系统集成来提高系统集成度,进一步让系统小型化和功能多样化,是一个有效的解决路线。但是三维系统的集成,会遇到热膨胀系数不匹配而带来的应力和封装体翘曲问题。插入层技术的引入,能有效的降低三维集成带来的应力和翘曲问题。其中以玻璃作为插入层能提高电性能、降低成本等优势。本论文在这个背景下,对玻璃作为插入层的核心技术进行研究。研究主要包含玻璃通孔(Through Glass Via,TGV)的制备、评估和TGV填孔两个方向。通过对现有TGV制备技术和TGV填孔技术的调研,本论文最终选择激光钻孔和电镀的方式制备带互连结构的TGV,并对制得样品采用开尔文结构进行电性能测试分析。本论文主要包含仿真分析、粘附层评估实验、TGV激光钻孔及TGV评估、TGV填孔、直流电性能测试。论文先对插入层的厚度做了热应力仿真,对TGV结构进行了优化,将电镀的深度定为180μm-220μm;再使用HFSS对优化结构进行电仿真,验证电性能相较与TSV的优良;对玻璃上的粘附层做了评估研究,最终选择TiW为玻璃的粘附层;再用飞秒激光对玻璃进行钻孔研究,制备出小孔径、高深宽比的盲孔;最后对60μm-70μm孔径的TGV进行了填孔的深入研究,这些研究包括电镀前处理对电镀的影响研究、不同ASD电流密度对深孔填充情况的研究、5ASD电流密度下电镀速率的研究、负向脉冲电流对电镀填充的影响,最终对60μm-70μm的TGV进行了很好的电镀填充,深度达到了214μm。在论文的最后部分,对制备的TGV互连结构进行了直流电性能测试,通过开尔文结构测试结果显示, TGV互连结构的直流电阻主要集中在15mΩ-40mΩ。通过直流电阻测试验证了本文中所论述关键工艺的可行性。本论文通过电镀的方式成功对214μm孔深、57μm孔径的TGV进行填孔。并通过电性能实测验证了该互连结构的可行性。对未来玻璃插入层的使用奠定了很好的技术基础。
As the development of microelectronics system miniaturization and diversification, the density of packaging system is increasing rapidly. The traditional 2D package is facing a lot of challenges which are restraining the development of microelectronics systems. The researchers are trying to use the promising 3D packaging to solve the limits of 2D packaging for smaller and more functional system. But, there will meet challenges of stress and deformation caused by CTE mismatch when different kinds of chips are integrated in one packaging. Interposer can efficient decrease the Equivalent Stress and the deformation of 3D integration system. When glass is used as the interposer, it can also improve the electoral performance and reduce the cost. Hence, this thesis will study the key technologies of glass interposer, like the glass via fabrication and metallization. Based on paper review, laser via drilling and electroplating metallization are chosen to fabricate TGV (Through Glass Via).This thesis contains pre-study of mechanical simulation and evaluation of adhesion layer to arrange the following research. The depth of electroplating is 180 micron to 220 micron decided by pre-study result. Drilling the high ratio blind via with the FS laser. Then this thesis will study the influence of the electroplating condition and electroplating parameters, such as the vacuum, high ASD, the reserve current. The high ASD can be also used for void free electroplate TGV to reduce the electroplating time. The last of this thesis is the resistance test of TGV by Kelvin test structure. The resistance of TGV filled with copper most is among the range of 15mΩ to 40mΩ. The TGV of 214 micron depth and 60 micron to 70 micron diameter can be filled with no void by electroplating. Through the resistance test result, it demonstrate the study of TGV technologies. The thesis lay the foundation for the use of Glass interposer.