“转台”是回转工作台的简称,在国防领域,高精密转台常用于测试某些对象的重要参数,转台的精度决定了测试结果的可靠性及可信程度。本文研究了大型高精密单轴转台控制系统的设计、转台精度的标定方法设计以及标定方法的不确定度,并分析了激光跟踪仪引入的反射镜误差,研究了测量对象对标定方法引入的两种不同误差的敏感程度。本文的主要研究内容如下:(1)提出了高精密转台的控制系统设计方案,完成了运动控制卡、单片机系统、ARM、信号切换模块的硬件设计、软件编程和调试,达到了用户提出的功能要求和可靠性要求。 (2)提出了高精密转台传感器信号处理的方案,粗自整角机和感应同步器共同实现转台的绝对位置反馈,信号处理实现各传感器信号从模拟信号到数字信号的转换以及粗精信号的耦合,实现高精度的位置反馈。(3)设计了实时CAN总线通讯网络,完成了相关的硬件设计及软件编程,通过优化通讯协议,实现了各节点快速可靠的实时通讯。CAN总线实现了各部分的相互监视及信息传递,保证了控制系统的正常运行。(4)提出了转台精度的标定方法,建立了基于CPA原理的激光跟踪仪标定系统。在转台台面边缘固定反射镜,转台旋转,角度脉冲触发激光跟踪仪测量反射镜所在转台平面的圆弧上的离散点坐标,通过处理被测数据得到转台的圆心,计算相邻离散点与圆心连线的夹角,得到夹角的概率分布,与理论角度增量的对比,评价转台系统的角度精度。(5)确定了标定方法中由激光跟踪仪引入的反射镜误差,研究了激光跟踪仪引入的两类误差—随机误差和系统误差对角度增量的影响,通过蒙特卡洛方法分析了转台的不确定度,评价标定方法的可行性。通过对上述内容的研究,满足了用户对转台精度、功能和可靠性的要求;提出了一种新的转台标定方法,分析了该方法的误差,对今后同类应用的测量模型优化和误差分析具有指导意义;标定方法的不确定度分析确定了该方法的可行性。
“Turn table” is the abbreviation of rotary table. High precise turn table is used to test some important parameters in the national defence field. The precision of turn table determines the reliability and dependability of the test results. This thesis studies on the design of large-scale single axis turn table’s control system, the calibration method of the angle precision and the uncertainty of the calibration method. The thesis also analyzes the error of the laser tracker’s reflector and researches the mearand’s sensitivity to the different errors introduced by the calibration method. The primary matters are described as follows:First, a modular idea is applied to the designing of the trun table’s control system, the hardware design, software programming and debug of the motion control unit, ARM, microchip system and interface module are finished, which met the user’s requirements.Second, a method of processing the feedback of the sensors is put forward. Rough selsyn and Inductosyn consititute absolute position feedback system, whose signals are processed through analog-to-digital converting and coarse-fine coupling.Third, real-time CAN bus is designed and the related hardware design and software programme is finished. The optimized communication protocol establishes a fast and reliable communication among the nodes. Nodes in the system transfer the message and monitor each other through CAN bus, which makes sure the system operate properly. Fourth, the calibration method of the angle precision is proposed: a reflector is put on the edge of the turn table and rotates with it. Laser tracker mesures the coordination of the reflector in the same angle interval.With the sampling data, the center of the trun table and angle interval’s probability distribution can be caculated, which reflects the precision of the turn table. The experiments verifies that the turn table’s precision meet user’s requirement.Fifth, the major systematic error source of the calibration method, laser tracker’s reflector, is proved, and the influences of the laser tracker’s errors to the angle interval are studied. Finally, Uncertainty of the calibration method is analyzed by Mente Carlo simulation and the result shows that the calibration method is feasible. Through studying on the above matters, user’s requirements to the precision, function and reliability of the turn table are met. A new large-scale turn table’s calibration method is put forward, and the errors introduced by this method are analyzed, which is useful for the optimization of the calibration. The research of the uncertainty proved the feasibility of the method.