登录 EN

添加临时用户

中国道路交通部门能源消费和GHG排放全生命周期分析

Life Cycle Energy Use for and GHG Emissions from the Road Transport Sector in China

作者:欧训民
  • 学号
    2007******
  • 学位
    博士
  • 电子邮箱
    oxm******.cn
  • 答辩日期
    2010.06.18
  • 导师
    张希良
  • 学科名
    管理科学与工程(可授管理学、工学学位)
  • 页码
    186
  • 保密级别
    公开
  • 培养单位
    059 公共管理学院
  • 中文关键词
    车用能源;替代燃料;全生命周期分析;温室气体排放;情景分析
  • 英文关键词
    Vehicle energy;Alternative fuel;Life cycle analysis;GHG emissions;Scenario analysis

摘要

我国正在发展多种车用替代燃料/新型动力车辆以保障未来车用能源供应安全。由于各技术路线间存在原料、开采、加工、运输和利用方式等差异性,对它们的能耗和温室气体(GHG)排放情况的对比研究,需要进行“从矿井到车轮”的全生命周期(LC)微观分析;对道路交通部门能源需求及GHG排放进行包含获取和使用阶段的LC分析,能更科学研究替代燃料发展对整个国家的宏观影响。在嵌套使用GREET模型基础上,建立起包含全生命周期分析(LCA)和车用能源需求预测(VEF)两个模块的中国车用能源研究模型(CAERM)。LCA模块中递进包含两个部分:终端能源LC计算平台和具体燃料/车辆路线LC分析程序。VEF模块中基于汽车保有量、车队年均行驶距离和车队平均燃油经济性三因子分析,实现能源需求总量及构成的计算。通过结合未来发展情景设计,本模型实现道路交通部门能源供应的LC能耗及GHG排放宏观分析。计算得到中国主要终端能源品种的LC化石能源和GHG排放强度清单,并对传统油气基、生物质基、煤基车用燃料和车用电力路线进行了LC能耗及GHG排放微观分析;结合未来车用能源需求预测,通过设计替代燃料的6种不同发展情景,对道路交通部门能耗和GHG排放进行了LC宏观分析。主要结论有:(1)目前我国主要替代燃料/车辆技术组合路线的LC节能减排优势均不明显,但具有以煤/气代油效果;(2)未来二代技术生物燃料和低碳电力路线LC优势突出,而煤基燃料路线则需结合二氧化碳捕获封存(CCS)技术才能改善其LC高碳排放劣势;(3)基于LCA分析,未来电动汽车路线优于传统汽车加装混合动力技术路线;煤电驱动电动汽车路线优于煤基液体燃料驱动传统汽车路线;(4)未来随着汽车保有量增长,中国车用能源(主要是石油)年需求量到2050年将增至2007年水平的5~6倍;(5)在促进生物燃料、煤基燃料和电动汽车分别大力发展的3种情景下,2050年道路交通部门汽柴油直接需求量相对BAU情景的减少比例在10%~40%之间;煤基燃料发展情景下,整个部门LC能耗和GHG排放将分别增加8%和10%;电动汽车发展情景下,则实现LC节能和GHG减排(分别减少约21%和15%);在促进煤基燃料和电动汽车同时发展并利用CCS技术的情景下,LC可减排GHG约22%;(6)综合以上情景的所有优势的全面发展情景下整个部门2050年直接和LC两方面的能耗和GHG排放相对BAU情景均大幅减少,其中汽柴油直接需求量和LC GHG排放分别减少64%和28%。

China is developing a variety of alternative fuels and new energy vehicles, in order to ensure oil supply security. Different types and sources of feedstock, including mining and processing, transport and utilization mode, for various technology pathways, requires a comparative study of energy consumption and GHG emissions based on full life-cycle micro-analysis, i.e. Well-to-Wheels. The life-cycle analysis (LCA) of vehicle fuel pathways covering the stages of resource extraction, fuel production and utilization is conducted to scientifically investigate the macro-impact of China’s road transport energy supply and related GHG emissions. Similar to the GREET model, the China Automotive Energy Research Model (CAERM) is designed with two main modules including life-cycle analysis (LCA) and vehicle energy demand forecast (VEF). In the LCA module a computing platform for life-cycle analysis of end-use energy and specific fuel/vehicles pathways is constructed. The VEF module is based on the analysis of major 3 factors for total vehicle fuel consumption and composition: (1) vehicle population; (2) fleet average distance travelled; and (3) fleet average fuel economy. The CAERM Model combines the two modules with scenario analysis, to generate macro-analysis of the life-cycle energy consumption and GHG emissions sourced from the road transport sector in China.Major results are derived: (1) energy consumption and GHG emissions LCA inventory of China's major end-use energy; (2) micro-analysis of LCA for multiple vehicle/fuel pathways including conventional oil/NG-based and alternative biomass-based fuels, coal-based fuel and electric vehicle pathways; and (3) macro effects of LCA for the road transport sector in six different scenarios relating to alternative fuels development. Conclusions are defined in six categories: (1) From the LCA perspective, various alternative fuel/vehicle pathways present in China do not result in obvious energy-saving and emission reduction advantages, but they can "substitute coal/natural gas for oil"; (2) Second generation bio-fuels and low-carbon electricity will show visible benefit for low carbon fuel, but the pathways for coal to liquids will not show a reduction in GHG emissions until CCS (CO2 Capture and Storage) technology is fully utilized; (3) EV (Electric Vehicle) pathways result in lower GHG emissions and energy usage than, not only the pathway of the HEV (Hybrid Electric Vehicle) when HEV technology is applied to traditional vehicles, but also in a traditional vehicle with liquid fuel pathway when the energy resource for both EVs and liquid fuel is coal; (4) With a rapidly growing vehicle population, energy (oil in particular) consumption by vehicle will increase dramatically to 2050 when the level is five to six times that of the current level in the BAU (Business As Usual) scenario; (5) In the scenarios of promoting bio-fuels, coal-based fuels or EVs, the oil demand directly from the road transport sector in 2050 can be reduced from 10% to 40% using the BAU scenario as the baseline. However, in the coal-based fuels development scenario, the life-cycle energy consumption and GHG emissions of the whole sector rises substantially from the BAU situation. The GHG emissions disadvantage can be resolved with the application of CCS technologies. Dual merits of life cycle energy-saving and emission reductions can be realized in the EV development scenarios; and (6) In the bring together case, which combines all the merits of the other scenarios, both the direct and life cycle energy consumption (in particular petroleum or oil) and GHG emissions for the entire road transport sector are substantially lower than the BAU scenario: 64% for direct petroleum and 28% for life cycle GHG emissions.