登录 EN

添加临时用户

高倍太阳能聚光器的研究

Studies on High-concentration Solar Concentrators

作者:曾飞
  • 学号
    2007******
  • 学位
    硕士
  • 电子邮箱
    zen******com
  • 答辩日期
    2010.06.01
  • 导师
    郝智彪
  • 学科名
    物理电子学
  • 页码
    51
  • 保密级别
    公开
  • 培养单位
    023 电子系
  • 中文关键词
    聚光器;匀光;聚光光伏;非成像光学
  • 英文关键词
    solar concentrators;homogenization;CPV;nonimaging optics

摘要

当前人类面临环境污染和能源危机所带来的问题,而太阳能则是蕴藏量巨大的清洁能源,因此如何高效地获取太阳能源成为本世纪的战略课题之一。聚光光伏是利用太阳能的先进方法,具有明显的技术和成本优势。然而,高倍太阳能聚光器的研究仍面临着许多困难,如何通过低成本的聚光技术来降低太阳能发电的总体成本成为人们关注的焦点。本论文主要研究了高倍太阳能聚光器设计中的理论难点,提出了由TIR-R透镜和匀光器构成的聚光器结构,并针对聚光倍数、容忍角、光照均匀度以及光通过率等参数进行了综合优化设计。全内反射聚光器具有聚光倍数高、容忍角大的优点,本论文首先对全内反射聚光器进行了一系列改进和优化设计。利用非成像光学方法,对全内反射聚光器进行了系统仿真,并设计了具有匀光器的TIR-R(Total Internal Reflection – Refraction)透镜,获得的聚光倍数为1256倍,容忍角为1.53°,最大光照度为平均照度的1.38倍,可满足应用要求。匀光器的主要作用是降低最大光照度,对于提高系统性能具有积极意义。为了提高系统的光通过率,本论文又设计了不同的二次透镜,重点对比了复合抛物面(CPC)聚光器和光锥聚光器的性能特点。仿真表明,光锥聚光器作为TIR透镜的二次透镜,可获得的聚光倍数为800倍,容忍角为1.3°;当光锥聚光器工作于全内反射状态时,容忍角下降到1.1°,而整体光学效率得到了提高。因此,光锥聚光器很好的解决了TIR透镜的光照不均匀、容忍角小的问题,并且对系统的光学效率没有较大影响,很好的起到了平衡各参数关系的作用。

Nowadays human beings are faced with the problems of energy crisis and environmental pollution. The sun is a source with a huge amount of clean energy, so it becomes the strategic subject of the century to find ways to make use of the solar energy. Concentrator photovoltaic is an advanced method with patent technological and cost advantages for use of solar power. However, we have a lot of difficulties with high concentration photovoltaics. And many people have focused their interest in the subject of how to cut the cost of photovoltaics by concentrating sunlightThis article mainly researched into the theoretical key points in high concentration photovoltaics and designed and optimized a TIR-R (Total Internal Reflection - Refraction) concentrator with a homogenizer considering factors such as concentration ratio, acceptance angle, homogenization and optical efficiencyTIR-R concentrators have the advantages of high acceptance angle and high concentration ratio, so this article firstly made some improvement for TIR-R concentrators. With the method of nonimaging optics, we simulated the properties of TIR concentrators and designed a TIR-R concentrator with a homogenizer with a concentration ratio of 1256X, an acceptance angle of 1.53°, and its maximum irradiance 1.38 times of the average. The homogenizer made a great contribution to the reduction of maximum irradiation and had an active influence upon the system efficiency.To improve the optical efficiency of the TIR concentrator, we designed TIR concentrators with CPCs (Compound Parabolic Concentrator) and light cones as secondary elements. As a result, the TIR concentrator with a cone concentrator as a secondary element could reach the acceptance angle of 1.3°under the concentration ratio of 800X. And if the cone worked by total internal refraction, the acceptance angle dropped to 1.1°while the whole system efficiency raised. So the cone concentrator could solve the problem of inhomogeneous irradiation and small acceptance angle of a TIR concentrator, without causing much degradation of system efficiency and well balanced the different factors of a concentrator.